Microstructure and Tribological Performance of TiB2-NiCr Composite Coating Deposited by APS

نویسندگان

  • Ning Zhang
  • Nannan Zhang
  • Xufeng Wei
  • Yue Zhang
  • Deyuan Li
  • Robert B. Heimann
چکیده

Nickel chromium (NiCr) powders with different titanium diboride (TiB2) additions (20, 40 and 60 wt %) were prepared with a mechanical alloying method and then sprayed using an air plasma spraying technology. The microstructure and phase composite of the powders and the cross-sections of deposited coatings were analyzed with a scanning electronic microscope and X-ray diffraction. The tribological performance of the coatings was studied using a pin-on-disk tribometer at room temperature. The weight loss of the as-sprayed coating was measured by using a high accuracy weighing balance. Cr3C2-25NiCr coating was produced and tested for comparison. The morphologies of the worn surface were then investigated. Parts of debris with some scratches were found, presenting typical signs of abrasive wear and showing slight adhesive wear on the surface. The 20 wt % additive TiB2 coating demonstrated the highest microhardness and the lowest coefficient of friction. The wear resistance of the metal-ceramic composites coatings was enhanced with the addition of TiB2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tribological properties of Cu-Ni3Al-MoS2 composite coating deposited by magnetron sputtering

In industrial applications, most materials are exposed to wear and friction because multiple conditions are used. However, the tribological properties of these materials can be improved with different techniques. One such technique that improves the frictional property of a surface is the use of self-lubricating coatings. In this study, multicomponent coatings of nominal composition Cu-Ni3Al-Mo...

متن کامل

Tribological behavior of sputter-deposited MoSX/Ni coatings

AbstractSputtered MoS2 coatings have been mostly used as a solid lubricant. In this investigation, MoSx/Ni composite coatings with Ni contents varying from 0 to 22 % were deposited onto steel substrate using a DC magnetron sputter process. The MoS2/Ni ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the...

متن کامل

Evaluation of tribological properties of (Ti,Al)CN/DLC composite coatings deposited by cathodic arc method.

In this study, Ti, Al and N doped DLC – referred to here after as “(Ti,Al)CN/DLC composite”- coating and pure diamond-like coating (DLC) were produced by cathodic arc deposition technique and the effects of the coating thickness on their tribological properties were evaluated. The coatings were characterized, using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffrac...

متن کامل

Effect of Substrate Bias Voltage and Ti Doping on the Tribological Properties of DC Magnetron Sputtered MoSx Coatings‌

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this work, composite MoSx/Ti coatings were deposited by direct-current magnetron sputter ion plating onto plain carbon steel substrates. The MoSx/Ti ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the coatings were explored using...

متن کامل

A Study of the Tribological Properties of Sputter-deposited MoSX/Cr Coatings

In this investigation, MoSx/Cr coatings were deposited by direct-current magnetron sputter onto Ck45 (AISI 1045) plain carbon steel substrates. The MoSx/Cr ratio in the coatings was controlled by sputtering the composite targets. The chemical characterization was performed using EDX (energy dispersive X-ray analysis); the structural characterization was accomplished by X-ray diffraction (XRD) s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017